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PROGRESS

This is a semi-annual status report for NASA grant NAG5-738.

The 15 state vibra¢ional close-coupling calculation for e- + N2 within the hybrid

theory has been completed. The K- matrices are stored in the HSM file system at

NASA-Goddard. I am in the process of retrieving them so as to calculate differential cross

sections at various energies corresponding to the possible vibrational excitation processes.

An investigation of the accuracy of the existing PDE code, which was written using a

three point difference scheme for first derivatives, has been conducted. This was done in

the context of the necessity for calculating continuum wavefunctions when it is required

to enforce orthogonality constraints between the continuum orbital and bound orbitals of

the same symmetry. To understand the context of this observation, I now discuss various

aspects of the PDE method.

I. Extension of the PDE Method to

Electron-Molecular Ion Scattering

(A) Static Exchange Approximation

The basic equations to be solved are illustrated by the static exchange equation

IX72 + k2]F(r ") =2V(_F(_

(1)

i=l

This is the most simple but reasonably realistic equation that is encountered in electron-

molecule scattering. F represents the Continuum orbital; _' represents the continuum

electron position vector; V¢', the exchange kernel, is given by

is a bound orbital of the target molecule. Realize that

(2)

-I)=

Then, two coupled equations, which must be solved simultaneously, axe then obtained

(3)

+
NE (4)



_25.,(e = -4_,(_F(_ (5)

plays the part of a pseudo-continuum orbital. It has the value of zero on the laxge

r boundary. There axe as many inhomogeneous equations like (5) as there axe bound

molecular orbitals.

Eqs. (4) and (5) axe elliptic PDEs. They axe solved by applying a finite difference

approximation to _2 to produce

A.._FF= _B (6)

A is the block tridiagonal coefficient matrix, _.F is the solution vector, and B is the boundary

vector.

At the r = p boundary, the paxtiaLwave solutions axe extracted by expanding the

PDE solution, for each symmetry m, in partial waves. '

Ii !i

The a's axe arbitrary amplitudes. The f's have the form

(7)

ft,_,(,') = sz,(_.)Pt,z,(,.)+ c_,(,.)Oz,zj(r) (8)

The S and C axe spherical Bessel functions if the taxget is neutral and Coulomb functions

if the taxget is charged. The value r = p is determined by the range of the exchange con-

tribution. The P and Q can be combined into a multidimensional vector f and propagated

to an approximate oe.

L(_s)= T(_s)__(_)

T is the propagator. The reaction matrix is then computed by

(9)

K ----Qp-1 (10)
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(B) Extension To Charged Or Open Shell Targets

We have generalized the PDE method to treat charged and open shell targets and

multichaanels in the fixed nuclei approximation (FNA). This means that the S and C are

Coulomb funtions for charged targets. To treat general open shell targets, we must expand

nT

'.P(m)-.A E '_i(l''"'N)Fi"_ (N + 1)
i=1

+ ,N + 1)C,,i
a=l

Here, the ¢J's are correlation terms. Tiffs results in the equation

(11)

nt

j=l (12)
Bc

+2Zu,°( cok
a=l

Note that the Lagraage multipliers are not needed since the orthogonality is enforced by

the specification of the value of 0 on the r = p boundary in the B vector. They can be

put in as an internal check (which we do). The C in (11) satisfies

E f_,_bCbj + E(Ui, IFi_) = 0 (12)
b=l i=l

where a = (1,... ,no) and j = (1,...,n,), and j is fixed. U and a are defined by

o_i=1,

(13)

a,,b = (_,,IHN+I -- EIDb) (14)

We might note that the correlation terms are of two types: (1) those that are required to

relax orthogonality and ; (2) those that are required to produce projectile-target correlation

(both short and long range).

Eqs. (12) are solved in the standard manner. In this procedure, F is expanded as

(drop the m symmetry notation)

Then the actual equations to be solved are
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Tl_ t

[_2 Jr" k2]F_:)(F--*) = 2 Z[]_j(F-_ 3I- T_!/)(r-'_]F_) (r-_

j=l

nt

.i=1

+2u,

The W's are here defined by

(16)

(17)

_t

V2 I2F(/) (F) -4w Z--* (o)= (18)

k=l

_t

_: I2d_) (_ -4_r Z _*k(_F_") (r_ (19)
k=l

Thus the formalism is similar to that of the Linear Algebraic Method of Schneider and

Collins. The primary difference is that we are solving PDE's instead of ordinary differential

equations.

Each of the Eqs. (18) and (19) may be solved independly on different processors and

then combined after solution. For those correlation terms included in Eq. (12) that axe

not required to relax orthogonality, an optical potential will be constructed in the manner

of Schneider and Collins.

II. PDE Vibrational Close-Coupllng

To treat vibrational excitation within the close-coupling formalism, consider the time-

independent Schrhdinger equation with" the vibrational Hamiltonian and explicit depen-

dence on the internuclear distance R included

[_2-2/_v, b + k2]F(F, R)= 2V(F,R)F(F,.R)

Ns

-2 Z
i=1

(2o)

where

The solution is obtained by expanding as

(21)

U_ez

F(F,R)= _ F_(_¢,(R)
v----0

(22)
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Ums_

v=0

Then, the generalizations for vibrational close-coupling are obtained

(23)

2[¢2+ ko]vv(_=2_ v_o,(_F_,(_
1,,I

NE

=_, tWvvv, (3
v I i=l

(24)

¢25_,_(_ = -4_ _ __(_'_'(_r_,(__., (25)
UP

Now consider the extension of the PDE method to a discretized internuclear separa-

tion. The following derivation is attributable to Dr. Aaron Temkin.

III. 3D PDE: Discretized Internuclear Separation

(A) Reduction of Scattering Equation to 3D

We specialize to e -- N2.

= A[¢(¢,R)¢N,(¢_,..., _)]

Where _b is the scattering orbital. Note:

(26)

R = I/_A- RB] (27)

We will employ a local exchange potential =_ neglect ft,. Substitution of (26) into the

Schr6dinger equation and premultiplication by ( N2 [ gives (use Rydberg units)

{ ^2 1 ¢2 1 ¢2
-V_ (MA/me) I_, (MB/m,) R. (28)

•"F (¢*N,I[V,-N, "F HN,]ION,) -- E}O(F', R) = 0

Decompose the kinetic energies of the nuclei into relative and c.m. coordinates and neglect

the latter =>

1 "2 1 ¢2 MA"F MB}¢_
--_A V _ A + _ t_8 "_ { _ M A M B

(29)

In the case of N2, MA -- MB "_ 14Mp (i.e. 7 protons and 7 neutrons). The static potential

in (28) is defined by
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v.,..o(e,a)= (_;v,lv.-ml_m) (30)

In order to give a more-realisticresult_a Hara Free Electron Gas (HFEG) Iocl exchange

potentii isemployed and also a localpolarizationpotentialisused 9

v.a.o(_,R)-.v(e,R) = vo,..o + Y_,rEa+ Y_ot (31)

The remaining potential term in (28) is the energy of N2 as a function of R and is given

by

_N,(R)= (_,IHN, I_N,)

The azimuthal dependence of ¢ is a constant of the motion =_

Thus (28) becomes

(32)

_)(r'_R) -- e irn_bS[r'o'R)" " (33)
rR

02 1 02

{ 0_ 7(M,/mo) OR_
1 -1 0 O m 2

- r--i ["-:--sinOO0 sinO O0 8in20 ]

+ eN,(R) + V(_',R) - E}s(r,O,R) = O

Note the implicit dependence of s on m 9 s = s ('').

We prefer to rewrite (34) as

d2
[A__(m)+2,Z_-+ k_(n)]_(__.R)=

27.-N.(r. R)_(r.R)

(34)

(35)

where

k_(R) = 2[E - eg2(R)] (36)

and

,_,(R) = S_r')(R)+ V.,,(R) (37)

where E(T')(R) is the electronic potential energy of N: and V..(R) is the nuclear repulsion

in N2.

Also
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1 [ 8 ms ]_ w + 80 + cotes0 (3s)

(B) Boundary Conditions

Because we are solving an elliptic PDE, the value of s must be specified on all bound-

aries. Refering to Fig. 2 showing the scattering volume, there are six boundary surfaces.

Because we have defined a continuum orbital which, is reduced in r and R, it is clear that

s - 0 on surfaces 2 and 4. We are also going to restrict to the IIg scattering symmetry

(this is not essential, but is done for simplicity in this first calculation), so that s = 0 on

surfaces 1 and 6. Only surfaces 3 (large R) and 5 (large r) axe not taken care of. In order

to treat the boundary surface 3, we restrict to scattering energies 3

E < DE _- 9.7536eV

t'or the potential surface of Zare/'or N2. Thus s = 0 because k2(R) < 0 and R is sufficiently

large that the orbital has decayed to zero inside the potential barrier. Note that if k2(.R) :>

0, the particle would be free on surface 3. The remaining surface is surface 5. This is the

large r = P2 surface. Here we solve (34) for a set of solutions for different l, m, and v where

we define the micro-channel solutions by

Then

_vz (P_, ,R) = P_(0)¢_(R)

(m)/
s_t tr > pl,8, R) =

vk

Note that pl < p2 and pl must be large enough that (40) is valid.

wavefunctions satisfy

(39)

(40)

The N2 vibrational

1 d 2

[" 7(Mp/m,) d.R 2 + E(T')(R)]f"(R) = e_¢,(R)

The solution procedure consists of

1. Solve (34) for a sufficient set of v, t, m defining the boundary conditions at r = p2.

2. From these solutions, calculate the projections

dR

(m)
=

(41)

(42)

?



3. Then use

(m) t

3v, l,,vl_,pl < r < p2) --" (43)

equating (42) and (43) for two different values of r, one of which can be p2, and for all

relevant indices v t, It <_ v, I. The K matrix is then determined from

K,,v,v, = E(A(-1)),,v,u;_Bvx,,l (44)

The solution for the other value of rl is obtained by backing the solution in from r2 = P2 to

r - rl. Then a simple 2x2 matrix inversion is required to determine the A and B matrices.

(C) Finite Differences

Applying a second order finite difference representation of the partial derivatives with

respect to r, 0 and R, we obtain (we only show the r derivatives)

Os(r, O,R) Si+lj,k - si-1 j,k
(45)

Or 2h_

02s(r, O, R) Si+l,j,k -- 2Sijk q- 8i-l,j,k
(46)

ar 2

similar expressions obtain for 0 and R. The expression that is actually programmed is

si+l,j,t+si-l,j,k+

+
aijsi,j+l,k Jr a'_si,j-l,k

bsi,j,k+l + bsi,j,k-1 -b CiikSiik -- 0

(47)

where

hl h2rcotOj
a_ =- 2 2 ±

r i h e 2r_ho
(48)

(49)

ciik -- -2 2h2 mh_
ri2he2 r28in20j

4tth2r
- 2hr_ik

(5O)
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Ilustrated on the diagram is an examplematrix representation of the finite difference
approximation to Eq. (47) correspondingto 3 R points, 3 8 points, and 4 r points.

(D) Extension To Polyatomic Scattering

The basic theory of the PDE method has been extended to include electron scattering

from polyatomic molecules in the fixed nuclei approximation. We shall neglect, in this

short sketch, any mention of irreducible representations, antisymmetry.

Specifically, the fixed-nuclei amplitude can be written:

f(_o, _') Z., a-/0m k_OJamml -Urn, m_PO)

v,;m,(a')

The total wave function is written

(51)

= y*

_targ_t is assumed to be known in some reasonable approximation. _ = (8, ¢) are the

spherical angles describing the scattered particle in a body-fixed frame; _0 are the angles

of the incident particle (which is no_ the z-axis) in the body frame.

Substitution in the fixed-nuclei SchrSdinger equation and premultiplication by

(53)

yields the desired 3d-pde

_2

[ Or2

Note: k 2 = E - Et=_g_, and

1 1 0 a 1 02

r 2 (sin8 O0 sinO-_ + sin28 0¢ 2 )+

off, o,¢) - k=lCtm(_,o,¢) = o
(54)

v(,-,e,¢) = (,_,°,.,,,v,_,,,,.,o,,_,,.,.,_,) (55)

Note that V is independent of f_0, which is a boundary condition and not a dynamical

variable; that is the key point of the fixed-nuclei approximation.

It is important to realize that for general polyatomic scattering, the potential and

hence the solutions are not diagonal, neither in l nor rn. These indices are useful because

they define asymptotic boundary conditions; the solutions, so indexed, can be expected to

converge rapidly in l (with -l < rn < l t ) for low energy scattering.

Specifically, defining individual solutions by their boundary conditions at r = p large,
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we cart project to find radial functions

f_*/,,,..,,..,(r) = ,,.,,(n)¢t,..(r, n)o!n

(56)

(57)

from which the K - matrix can be evaluated.

The above equations apply to electron-molecule scattering in the static exchange ap-

proximation.

Thus we see that in equation (12), the integral of the continuum orbital with bound

orbitals must be calculated. It has been found that a higher order algorithm is needed.

This extension to an arbitrary order algorithm is in progress.
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